首页> 外文OA文献 >Adaptive thresholding for multi-label SVM classification with application to protein subcellular localization prediction
【2h】

Adaptive thresholding for multi-label SVM classification with application to protein subcellular localization prediction

机译:多标签支持向量机分类的自适应阈值及其在蛋白质亚细胞定位预测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-label classification has received increasing attention in computational proteomics, especially in protein subcellular localization. Many existing multi-label protein predictors suffer from over-prediction because they use a fixed decision threshold to determine the number of labels to which a query protein should be assigned. To address this problem, this paper proposes an adaptive thresholding scheme for multi-label support vector machine (SVM) classifiers. Specifically, each one-vs-rest SVM has an adaptive threshold that is a fraction of the maximum score of the one-vs-rest SVMs in the classifier. Therefore, the number of class labels of the query protein depends on the confidence of the SVMs in the classification. This scheme is integrated into our recently proposed subcellular localization predictor that uses the frequency of occurrences of gene-ontology terms as feature vectors and one-vs-rest SVMs as classifiers. Experimental results on two recent datasets suggest that the scheme can effectively avoid both over-prediction and under-prediction, resulting in performance significantly better than other gene-ontology based subcellular localization predictors.
机译:多标签分类在计算蛋白质组学中,尤其是在蛋白质亚细胞定位中,受到越来越多的关注。许多现有的多标签蛋白预测因子会出现过度预测的情况,因为它们使用固定的决策阈值来确定应将查询蛋白分配给的标签数量。为了解决这个问题,本文提出了一种用于多标签支持向量机(SVM)分类器的自适应阈值方案。具体地,每个一对一静止SVM具有自适应阈值,该自适应阈值是分类器中一对一静止SVM的最大分数的一部分。因此,查询蛋白的类别标签的数量取决于SVM在分类中的置信度。该方案已整合到我们最近提出的亚细胞定位预测器中,该预测器将基因本体术语的出现频率用作特征向量,将一对余的SVM作为分类器。在两个最近的数据集上的实验结果表明,该方案可以有效避免过度预测和预测不足,从而导致性能明显优于其他基于基因本体论的亚细胞定位预测器。

著录项

  • 作者

    Wan, SB; Mak, MW; Kung, SY;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号